admin管理员组文章数量:1487745
GL分数阶微积分
目录
- 预备公式
- 将积分和导数统一
- -p<0表示积分
- p>0表示导数
- 整数阶和分数阶混合运算
- 分数阶和分数阶混合运算
预备公式
Γ ( z + 1 ) = z Γ ( z ) (1) \Gamma(z+1)=z\Gamma(z)\tag{1} Γ(z+1)=zΓ(z)(1)
Γ ( z ) = ∫ 0 ∞ e − t t z − 1 d t = lim n → ∞ n ! n z z ( z + 1 ) . . . ( z + n ) = lim n → ∞ n z [ p r ] ( p + r ) (2) \Gamma(z)=\int_{0}^{\infty} e^{-t}t^{z-1}\mathrm{d}t=\lim_{n\to\infty}\frac{n!n^{z}}{z(z+1)...(z+n)}=\lim_{n\to\infty}\frac{n^{z}}{\begin{bmatrix} p\\r \end{bmatrix}(p+r)}\tag{2} Γ(z)=∫0∞e−ttz−1dt=n→∞limz(z+1)...(z+n)n!nz=n→∞lim[pr](p+r)nz(2)
B ( z , w ) = ∫ 0 1 τ z − 1 ( 1 − τ ) w − 1 d τ = Γ ( z ) Γ ( w ) Γ ( z + w ) (3) B(z,w)=\int_0^1\tau^{z-1}(1-\tau)^{w-1}\mathrm{d}\tau=\frac{\Gamma(z)\Gamma(w)}{\Gamma(z+w)}\tag{3} B(z,w)=∫01τz−1(1−τ)w−1dτ=Γ(z+w)Γ(z)Γ(w)(3)
[ p r ] = p ( p + 1 ) . . . ( p + r − 1 ) r ! = ( − 1 ) r ( − p r ) (4) \begin{bmatrix} p\\r \end{bmatrix}=\frac{p(p+1)...(p+r-1)}{r!}=(-1)^r\begin{pmatrix}-p\\r \end{pmatrix}\tag{4} [pr]=r!p(p+1)...(p+r−1)=(−1)r(−pr)(4)
( p r ) = ( p − 1 r ) + ( p − 1 r − 1 ) (5) \begin{pmatrix}p\\r \end{pmatrix}=\begin{pmatrix}p-1\\r \end{pmatrix}+\begin{pmatrix}p-1\\r-1 \end{pmatrix}\tag{5} (pr)=(p−1r)+(p−1r−1)(5)
f n ( t ) = d n f d t n = lim h → 0 1 h n ∑ r = 0 n ( − 1 ) r ( n r ) f ( t − r h ) = lim h → 0 1 h n Δ n f ( t ) (6) f^{n}(t)=\frac{d^{n}f}{dt^{n}}=\lim_{h\to 0} \frac{1}{h^n}\sum_{r=0}^{n}(-1)^r\begin{pmatrix}n\\r \end{pmatrix} f(t-rh)=\lim_{h\to 0} \frac{1}{h^n}\Delta^nf(t)\tag{6} fn(t)=dtndnf=h→0limhn1r=0∑n(−1)r(nr)f(t−rh)=h→0limhn1Δnf(t)(6)
变限积分求导

将积分和导数统一
我们把n阶导数的定义,即公式(6)极限号去掉,并且把p的范围从正整数改为实数,从而定义了下面这个函数
f h ( p ) ( t ) = 1 h p ∑ r = 0 p ( − 1 ) r ( p r ) f ( t − r h ) (7) f^{(p)}_h(t)=\frac{1}{h^p}\sum_{r=0}^{p}(-1)^r\begin{pmatrix}p\\r \end{pmatrix}f(t-rh) \tag{7} fh(p)(t)=hp1r=0∑p(−1)r(pr)f(t−rh)(7)
再定义极限
lim h → 0 n h = t − a f h ( p ) ( t ) = a D t p f ( t ) (8) \lim_{h\to 0 \atop nh=t-a }f^{(p)}_h(t)=_aD^{p}_tf(t)\tag{8} nh=t−ah→0limfh(p)(t)=aDtpf(t)(8)
-p<0表示积分
此时是一个变上限积分,区间从a到t,证明利用定积分定义即可
当p是整数时,(8)的极限和p阶乘有关,即
a D t − p f ( t ) = 1 ( p + 1 ) ! ∫ a t ( t − τ ) p − 1 f ( τ ) d t (9) _aD^{-p}_tf(t)=\frac{1}{(p+1)!}\int_a^t(t-\tau)^{p-1}f(\tau)\mathrm{d}t\tag{9} aDt−pf(t)=(p+1)!1∫at(t−τ)p−1f(τ)dt(9)
p是任意阶时用gamma函数代替阶乘,证明过程在书2.2。
a D t − p f ( t ) = 1 Γ ( p + 1 ) ∫ a t ( t − τ ) p − 1 f ( τ ) d t (10) _aD^{-p}_tf(t)=\frac{1}{\Gamma(p+1)}\int_a^t(t-\tau)^{p-1}f(\tau)\mathrm{d}t \tag{10} aDt−pf(t)=Γ(p+1)1∫at(t−τ)p−1f(τ)dt(10)
如果函数m+1阶连续,由分部积分可知
a D t − p f ( t ) = ∑ k = 0 m f ( k ) ( a ) ( t − a ) p + k Γ ( p + k + 1 ) + 1 Γ ( p + k + 1 ) ∫ a t ( t − τ ) p + m f m + 1 ( τ ) d τ (11) _aD^{-p}_tf(t)=\sum_{k=0}^m\frac{f^{(k)}(a)(t-a)^{p+k}}{\Gamma(p+k+1)}+\frac{1}{\Gamma(p+k+1)}\int_a^t(t-\tau)^{p+m}f^{m+1}(\tau)\mathrm{d}\tau \tag{11} aDt−pf(t)=k=0∑mΓ(p+k+1)f(k)(a)(t−a)p+k+Γ(p+k+1)1∫at(t−τ)p+mfm+1(τ)dτ(11)
p>0表示导数
当p>0时上述定义函数具有性质(利用公式(5)证明)
f h ( p ) ( t ) = ∑ k = 0 m ( − 1 ) n − k ( p − k − 1 r n − k ) h − p Δ k f ( a + k h ) + p − 1 ∑ r = 0 n − m − 1 ( − 1 ) r ( p − m − 1 r ) Δ m + 1 f ( t − r h ) f^{(p)}_h(t)=\sum_{k=0}^{m}(-1)^{n-k}\begin{pmatrix}p-k-1\\rn-k\end{pmatrix}h^{-p}\Delta^kf(a+kh)+p^{-1}\sum_{r=0}^{n-m-1}(-1)^r\begin{pmatrix}p-m-1\\r \end{pmatrix}\Delta^{m+1}f(t-rh) fh(p)(t)=k=0∑m(−1)n−k(p−k−1rn−k)h−pΔkf(a+kh)+p−1r=0∑n−m−1(−1)r(p−m−1r)Δm+1f(t−rh)
对上式求积分估计,和积分形式是一样的。但是需要满足m<p<m+1
a D t p f ( t ) = ∑ k = 0 m f ( k ) ( a ) ( t − a ) − p + k Γ ( − p + k + 1 ) + 1 Γ ( − p + m + 1 ) ∫ a t ( t − τ ) − p + m f m + 1 ( τ ) d τ (12) _aD^{p}_tf(t)=\sum_{k=0}^m\frac{f^{(k)}(a)(t-a)^{-p+k}}{\Gamma(-p+k+1)}+\\\frac{1}{\Gamma(-p+m+1)}\int_a^t(t-\tau)^{-p+m}f^{m+1}(\tau)\mathrm{d}\tau \tag{12} aDtpf(t)=k=0∑mΓ(−p+k+1)f(k)(a)(t−a)−p+k+Γ(−p+m+1)1∫at(t−τ)−p+mfm+1(τ)dτ(12)
特殊的函数 ( t − a ) ν (t-a)^{\nu} (t−a)ν有分数阶导数
a D t p ( t − a ) ν = Γ ( ν + 1 ) Γ ( − p + ν + 1 ) ( t − a ) ν − p (13) _aD^{p}_t(t-a)^{\nu}=\frac{\Gamma(\nu+1)}{\Gamma(-p+\nu+1)}(t-a)^{\nu-p}\tag{13} aDtp(t−a)ν=Γ(−p+ν+1)Γ(ν+1)(t−a)ν−p(13)
整数阶和分数阶混合运算
利用变上限积分求导
d n d t n ( a D t p f ( t ) ) = ∑ k = 0 s f ( k ) ( a ) ( t − a ) − p + n + k Γ ( − p + n + k + 1 ) + 1 Γ ( − p + n + s + 1 ) ∫ a t ( t − τ ) − p + s + n f s + 1 ( τ ) d τ = a D t p + n f ( t ) (14) \frac{d^n}{dt^n}(_aD^{p}_tf(t))=\sum_{k=0}^s\frac{f^{(k)}(a)(t-a)^{-p+n+k}}{\Gamma(-p+n+k+1)}+\frac{1}{\Gamma(-p+n+s+1)}\int_a^t(t-\tau)^{-p+s+n}f^{s+1}(\tau)\mathrm{d}\tau \\ =_aD^{p+n}_tf(t)\tag{14} dtndn(aDtpf(t))=k=0∑sΓ(−p+n+k+1)f(k)(a)(t−a)−p+n+k+Γ(−p+n+s+1)1∫at(t−τ)−p+s+nfs+1(τ)dτ=aDtp+nf(t)(14)
a D t p ( d n f ( t ) d t n ) = ∑ k = 0 s f ( n + k ) ( a ) ( t − a ) − p + k Γ ( − p + k + 1 ) + 1 Γ ( − p + s + 1 ) ∫ a t ( t − τ ) − p + s f n + s + 1 ( τ ) d τ (15) _aD^{p}_t(\frac{d^nf(t)}{dt^n})=\sum_{k=0}^s\frac{f^{(n+k)}(a)(t-a)^{-p+k}}{\Gamma(-p+k+1)}+\frac{1}{\Gamma(-p+s+1)}\int_a^t(t-\tau)^{-p+s}f^{n+s+1}(\tau)\mathrm{d}\tau\\ \tag{15} aDtp(dtndnf(t))=k=0∑sΓ(−p+k+1)f(n+k)(a)(t−a)−p+k+Γ(−p+s+1)1∫at(t−τ)−p+sfn+s+1(τ)dτ(15)
证明技巧:s取不同的值 P57 一式s=m+n-1,二式s=m-1,两式相减就有下式
d n d t n ( a D t p f ( t ) ) = a D t p ( d n f ( t ) d t n ) + ∑ k = 0 n − 1 f ( k ) ( a ) ( t − a ) − p + n + k Γ ( − p + n + k + 1 ) (16) \frac{d^n}{dt^n}(_aD^{p}_tf(t))= _aD^{p}_t(\frac{d^nf(t)}{dt^n})+\sum_{k=0}^{n-1}\frac{f^{(k)}(a)(t-a)^{-p+n+k}}{\Gamma(-p+n+k+1)}\tag{16} dtndn(aDtpf(t))=aDtp(dtndnf(t))+k=0∑n−1Γ(−p+n+k+1)f(k)(a)(t−a)−p+n+k(16)
显然当t=a,a导数为0有
d n d t n ( a D t p f ( t ) ) = a D t p ( d n f ( t ) d t n ) = a D t p + n f ( t ) \frac{d^n}{dt^n}(_aD^{p}_tf(t))= _aD^{p}_t(\frac{d^nf(t)}{dt^n})=_aD^{p+n}_tf(t) dtndn(aDtpf(t))=aDtp(dtndnf(t))=aDtp+nf(t)
分数阶和分数阶混合运算
这个地方的结果和整数阶是一样的,p和q的是任意大于零的数。
a D t q ( a D t p f ( t ) ) = a D t p ( a D t q f ( t ) ) = a D t p + q f ( t ) (17) _aD^{q}_t(_aD^{p}_tf(t))=_aD^{p}_t(_aD^{q}_tf(t))=_aD^{p+q}_tf(t)\tag{17} aDtq(aDtpf(t))=aDtp(aDtqf(t))=aDtp+qf(t)(17)
本文标签: GL分数阶微积分
版权声明:本文标题:GL分数阶微积分 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/biancheng/1701811422a484875.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论