admin管理员组文章数量:1487745
YoloV8改进策略:独家原创,LSKA(大可分离核注意力)改进YoloV8,比Transformer更有效,包括论文翻译和实验
摘要
本文给大家带来一种超大核注意力机制的改进方法,尝试了多种改进方法。不仅速度快,而且还有不同程度的提升了精度!
YoloV8官方结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary (fused): 268 layers, 43631280 parameters, 0 gradients, 165.0 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 29/29 [
all 230 1412 0.922 0.957 0.986 0.737
c17 230 131 0.973 0.992 0.995 0.825
c5 230 68 0.945 1 0.995 0.836
helicopter 230 43 0.96 0.907 0.951 0.607
c130 230 85 0.984 1 0.995 0.655
f16 230 57 0.955 0.965 0.985 0.669
b2 230 2 0.704 1 0.995 0.722
other 230 86 0.903 0.942 0.963 0.534
b52 230 70 0.96 0.971 0.978 0.831
kc10 230 62 0.999 0.984 0.99 0.847
command 230 40 0.97 1 0.995 0.811
f15 230 123 0.891 1 0.992 0.701
kc135 230 91 0.971 0.989 0.986 0.712
a10 230 27 1 0.555 0.899 0.456
b1 230 20 0.972 1 0.995 0.793
aew 230 25 0.945 1 0.99 0.784
f22 230 17 0.913 1 0.995 0.725
p3 230 105 0.99 1 0.995 0.801
p8 230 1 0.637 1 0.995 0.597
f35 230 32 0.939 0.938 0.978 0.574
f18 230 125 0.985 0.992 0.987 0.817
v22 230 41 0.983 1 0.995 0.69
su-27 230 31 0.925 1 0.995 0.859
il-38 230 27 0.972 1 0.995 0.811
tu-134 230 1 0.663 1 0.995 0.895
su-33 230 2 1 0.611 0.995 0.796
an-70 230 2 0.766 1 0.995 0.73
tu-22 230 98 0.984 1 0.995 0.831
Speed: 0.2ms preprocess, 3.8ms inference, 0.0ms loss, 0.8ms postprocess per image
改进一
测试结果
1、核大小为7的测试结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary (fused): 348 layers, 48066608 parameters, 0 gradients, 181.5 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:02<00:00, 5.12it/s]
all 230 1412 0.964 0.965 0.99 0.75
c17 230 131 0.986 0.985 0.995 0.822
c5 230 68 0.958 0.999 0.994 0.841
helicopter 230 43 0.977 0.967 0.981 0.612
c130 230 85 0.995 0.988 0.995 0.684
f16 230 57 0.991 0.965 0.99 0.685
b2 230 2 0.879 1 0.995 0.849
other 230 86 0.972 0.953 0.969 0.545
b52 230 70 0.986 0.976 0.988 0.851
kc10 230 62 0.996 0.984 0.989 0.849
command 230 40 0.991 1 0.995 0.837
f15 230 123 0.968 0.997 0.994 0.701
kc135 230 91 0.978 0.989 0.991 0.723
a10 230 27 0.949 0.684 0.924 0.434
b1 230 20 0.984 0.95 0.993 0.732
aew 230 25 0.949 1 0.995 0.774
f22 230 17 0.975 1 0.995 0.742
p3 230 105 0.99 0.982 0.995 0.794
p8 230 1 0.816 1 0.995 0.597
f35 230 32 0.953 0.938 0.991 0.555
f18 230 125 0.99 0.992 0.992 0.825
v22 230 41 0.992 1 0.995 0.709
su-27 230 31 0.985 1 0.995 0.835
il-38 230 27 0.987 1 0.995 0.852
tu-134 230 1 0.797 1 0.995 0.895
su-33 230 2 1 0.702 0.995 0.796
an-70 230 2 1 1 0.995 0.858
tu-22 230 98 0.997 1 0.995 0.844
Speed: 0.2ms preprocess, 5.7ms inference, 0.0ms loss, 0.9ms postprocess per image
2、核大小为53的测试结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary (fused): 348 layers, 48169008 parameters, 0 gradients, 182.1 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:03<00:00, 4.90it/s]
all 230 1412 0.971 0.967 0.99 0.755
c17 230 131 0.985 0.985 0.995 0.831
c5 230 68 0.956 0.958 0.993 0.831
helicopter 230 43 0.977 0.972 0.983 0.618
c130 230 85 1 0.975 0.994 0.671
f16 230 57 1 0.954 0.991 0.666
b2 230 2 0.934 1 0.995 0.754
other 230 86 0.976 0.928 0.982 0.542
b52 230 70 0.985 0.937 0.987 0.855
kc10 230 62 1 0.976 0.989 0.859
command 230 40 0.98 1 0.995 0.847
f15 230 123 0.984 0.992 0.995 0.702
kc135 230 91 0.972 0.989 0.991 0.715
a10 230 27 1 0.581 0.928 0.461
b1 230 20 1 0.982 0.995 0.754
aew 230 25 0.951 1 0.995 0.786
f22 230 17 0.969 1 0.995 0.718
p3 230 105 0.996 1 0.995 0.796
p8 230 1 0.85 1 0.995 0.895
f35 230 32 1 0.885 0.991 0.574
f18 230 125 0.99 0.992 0.994 0.82
v22 230 41 0.994 1 0.995 0.74
su-27 230 31 0.991 1 0.995 0.869
il-38 230 27 0.99 1 0.995 0.867
tu-134 230 1 0.835 1 0.995 0.895
su-33 230 2 1 1 0.995 0.697
an-70 230 2 0.894 1 0.995 0.796
tu-22 230 98 0.999 1 0.995 0.84
Speed: 0.2ms preprocess, 6.3ms inference, 0.0ms loss, 0.7ms postprocess per image
改进二
测试结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary: 748 layers, 34850736 parameters, 0 gradients, 130.7 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:03<00:00, 4.41it/s]
all 230 1412 0.965 0.98 0.991 0.754
c17 230 131 0.988 1 0.995 0.855
c5 230 68 0.962 1 0.995 0.836
helicopter 230 43 0.946 0.977 0.975 0.647
c130 230 85 0.993 1 0.995 0.663
f16 230 57 0.988 0.965 0.99 0.682
b2 230 2 0.877 1 0.995 0.796
other 230 86 0.975 0.977 0.977 0.536
b52 230 70 0.993 0.986 0.989 0.841
kc10 230 62 0.994 0.984 0.99 0.862
command 230 40 0.991 1 0.995 0.82
f15 230 123 1 0.998 0.995 0.714
kc135 230 91 0.996 0.989 0.991 0.704
a10 230 27 1 0.8 0.965 0.449
b1 230 20 0.984 1 0.995 0.72
aew 230 25 0.945 1 0.993 0.779
f22 230 17 0.979 1 0.995 0.772
p3 230 105 0.995 0.962 0.994 0.791
p8 230 1 0.81 1 0.995 0.697
f35 230 32 1 0.985 0.995 0.548
f18 230 125 0.991 0.992 0.99 0.838
v22 230 41 0.99 1 0.995 0.735
su-27 230 31 0.986 1 0.995 0.89
il-38 230 27 0.986 1 0.995 0.844
tu-134 230 1 0.828 1 0.995 0.895
su-33 230 2 1 0.855 0.995 0.796
an-70 230 2 0.867 1 0.995 0.796
tu-22 230 98 0.996 1 0.995 0.843
Speed: 0.2ms preprocess, 8.2ms inference, 0.0ms loss, 1.3ms postprocess per image
改进三
测试结果
主干网络为van_tiny的测试结果:
代码语言:javascript代码运行次数:0运行复制 Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:02<00:00, 5.16it/s]
all 230 1412 0.967 0.959 0.988 0.731
c17 230 131 0.982 0.992 0.994 0.84
c5 230 68 0.971 0.988 0.994 0.832
helicopter 230 43 0.959 0.93 0.981 0.608
c130 230 85 1 0.996 0.995 0.648
f16 230 57 0.996 0.965 0.983 0.673
b2 230 2 0.885 1 0.995 0.747
other 230 86 0.972 0.919 0.956 0.485
b52 230 70 0.983 0.971 0.986 0.83
kc10 230 62 0.996 0.984 0.989 0.837
command 230 40 0.983 1 0.995 0.825
f15 230 123 0.992 0.967 0.994 0.672
kc135 230 91 0.989 0.983 0.985 0.699
a10 230 27 0.996 0.519 0.945 0.434
b1 230 20 0.984 1 0.995 0.712
aew 230 25 0.95 1 0.995 0.734
f22 230 17 0.986 1 0.995 0.724
p3 230 105 1 0.964 0.995 0.8
p8 230 1 0.872 1 0.995 0.697
f35 230 32 1 0.736 0.964 0.488
f18 230 125 0.988 0.984 0.987 0.8
v22 230 41 0.993 1 0.995 0.711
su-27 230 31 0.991 1 0.995 0.868
il-38 230 27 0.984 1 0.995 0.845
tu-134 230 1 0.825 1 0.995 0.895
su-33 230 2 0.959 1 0.995 0.713
an-70 230 2 0.885 1 0.995 0.796
tu-22 230 98 0.985 1 0.995 0.833
Speed: 0.2ms preprocess, 5.6ms inference, 0.0ms loss, 1.0ms postprocess per image
主干网络为van_base的测试结果:
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary: 799 layers, 46376664 parameters, 0 gradients, 145.8 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:03<00:00, 4.34it/s]
all 230 1412 0.954 0.961 0.988 0.739
c17 230 131 0.984 0.992 0.995 0.833
c5 230 68 0.953 1 0.995 0.833
helicopter 230 43 0.945 0.977 0.96 0.61
c130 230 85 0.983 0.988 0.995 0.652
f16 230 57 0.976 0.965 0.988 0.657
b2 230 2 0.878 1 0.995 0.697
other 230 86 0.919 0.942 0.968 0.494
b52 230 70 0.977 0.971 0.981 0.828
kc10 230 62 0.992 0.984 0.989 0.856
command 230 40 0.988 1 0.995 0.818
f15 230 123 0.937 0.992 0.995 0.664
kc135 230 91 0.995 0.989 0.991 0.709
a10 230 27 1 0.62 0.909 0.455
b1 230 20 1 0.994 0.995 0.78
aew 230 25 0.945 1 0.992 0.77
f22 230 17 0.974 1 0.995 0.763
p3 230 105 1 0.984 0.995 0.806
p8 230 1 0.77 1 0.995 0.697
f35 230 32 1 0.996 0.995 0.503
f18 230 125 0.989 0.992 0.992 0.829
v22 230 41 0.989 1 0.995 0.71
su-27 230 31 0.964 1 0.995 0.86
il-38 230 27 0.972 1 0.995 0.862
tu-134 230 1 0.76 1 0.995 0.895
su-33 230 2 1 0.552 0.995 0.759
an-70 230 2 0.865 1 0.995 0.796
tu-22 230 98 0.999 1 0.995 0.805
Speed: 0.2ms preprocess, 9.1ms inference, 0.0ms loss, 0.7ms postprocess per image
tiny模型的运算量为78.6 GFLOPs,比原始的模型降了一半,同时精度也有一点降低。
改进四
测试结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary: 631 layers, 23706232 parameters, 0 gradients, 78.6 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:02<00:00, 5.25it/s]
all 230 1412 0.964 0.969 0.988 0.747
c17 230 131 0.991 0.992 0.995 0.84
c5 230 68 0.977 1 0.995 0.832
helicopter 230 43 0.955 0.99 0.976 0.657
c130 230 85 0.932 1 0.958 0.637
f16 230 57 0.977 0.965 0.978 0.693
b2 230 2 0.875 1 0.995 0.947
other 230 86 0.975 0.921 0.957 0.519
b52 230 70 0.986 0.978 0.988 0.841
kc10 230 62 1 0.984 0.99 0.85
command 230 40 0.991 1 0.995 0.836
f15 230 123 0.952 0.992 0.995 0.677
kc135 230 91 0.976 0.989 0.99 0.701
a10 230 27 1 0.603 0.955 0.448
b1 230 20 1 0.969 0.995 0.736
aew 230 25 0.944 1 0.99 0.768
f22 230 17 0.948 1 0.995 0.759
p3 230 105 0.997 0.962 0.988 0.809
p8 230 1 0.82 1 0.995 0.497
f35 230 32 1 0.955 0.995 0.571
f18 230 125 0.989 0.992 0.992 0.827
v22 230 41 0.989 1 0.995 0.747
su-27 230 31 0.981 1 0.995 0.847
il-38 230 27 0.976 1 0.995 0.837
tu-134 230 1 0.789 1 0.995 0.895
su-33 230 2 1 0.858 0.995 0.697
an-70 230 2 1 1 0.995 0.858
tu-22 230 98 0.997 1 0.995 0.83
Speed: 0.2ms preprocess, 5.3ms inference, 0.0ms loss, 0.9ms postprocess per image
从测试结果上看,mAP50-95提升的幅度还是很大!
改进五
测试结果
代码语言:javascript代码运行次数:0运行复制YOLOv8l summary (fused): 278 layers, 44443824 parameters, 0 gradients, 165.6 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 15/15 [00:06<00:00, 2.40it/s]
all 230 1412 0.97 0.968 0.99 0.745
c17 230 131 0.99 0.992 0.995 0.832
c5 230 68 0.95 0.985 0.994 0.832
helicopter 230 43 0.957 0.953 0.979 0.631
c130 230 85 0.995 0.976 0.995 0.676
f16 230 57 0.998 0.93 0.988 0.675
b2 230 2 0.91 1 0.995 0.777
other 230 86 0.988 0.95 0.977 0.539
b52 230 70 0.982 0.971 0.987 0.846
kc10 230 62 1 0.975 0.99 0.847
command 230 40 0.993 1 0.995 0.855
f15 230 123 0.975 0.968 0.994 0.688
kc135 230 91 0.985 0.989 0.982 0.717
a10 230 27 1 0.621 0.936 0.463
b1 230 20 0.991 1 0.995 0.718
aew 230 25 0.953 1 0.993 0.8
f22 230 17 0.937 1 0.995 0.723
p3 230 105 1 0.967 0.995 0.804
p8 230 1 0.878 1 0.995 0.697
f35 230 32 1 0.887 0.991 0.552
f18 230 125 0.976 0.989 0.992 0.818
v22 230 41 0.994 1 0.995 0.727
su-27 230 31 0.992 1 0.995 0.845
il-38 230 27 0.984 1 0.995 0.856
tu-134 230 1 0.867 1 0.995 0.895
su-33 230 2 1 0.984 0.995 0.759
an-70 230 2 0.907 1 0.995 0.726
tu-22 230 98 0.998 1 0.995 0.828
Speed: 0.3ms preprocess, 6.3ms inference, 0.0ms loss, 3.4ms postprocess per image
mAP50 和mAP50-95均有提升!
总结
本文尝试了五种改进方式,既有轻量,又有提点的方法!欢迎大家在自己的数据集上做尝试!
文章详见:
代码语言:javascript代码运行次数:0运行复制.2014.3001.5502
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。原始发表:2023-11-26,如有侵权请联系 cloudcommunity@tencent 删除论文模型网络测试翻译本文标签: YoloV8改进策略独家原创,LSKA(大可分离核注意力)改进YoloV8,比Transformer更有效,包括论文翻译和实验
版权声明:本文标题:YoloV8改进策略:独家原创,LSKA(大可分离核注意力)改进YoloV8,比Transformer更有效,包括论文翻译和实验 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/shuma/1754670470a3176287.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论