admin管理员组

文章数量:1487745

YoloV8改进策略:独家原创,LSKA(大可分离核注意力)改进YoloV8,比Transformer更有效,包括论文翻译和实验

摘要

本文给大家带来一种超大核注意力机制的改进方法,尝试了多种改进方法。不仅速度快,而且还有不同程度的提升了精度!

YoloV8官方结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary (fused): 268 layers, 43631280 parameters, 0 gradients, 165.0 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 29/29 [
                   all        230       1412      0.922      0.957      0.986      0.737
                   c17        230        131      0.973      0.992      0.995      0.825
                    c5        230         68      0.945          1      0.995      0.836
            helicopter        230         43       0.96      0.907      0.951      0.607
                  c130        230         85      0.984          1      0.995      0.655
                   f16        230         57      0.955      0.965      0.985      0.669
                    b2        230          2      0.704          1      0.995      0.722
                 other        230         86      0.903      0.942      0.963      0.534
                   b52        230         70       0.96      0.971      0.978      0.831
                  kc10        230         62      0.999      0.984       0.99      0.847
               command        230         40       0.97          1      0.995      0.811
                   f15        230        123      0.891          1      0.992      0.701
                 kc135        230         91      0.971      0.989      0.986      0.712
                   a10        230         27          1      0.555      0.899      0.456
                    b1        230         20      0.972          1      0.995      0.793
                   aew        230         25      0.945          1       0.99      0.784
                   f22        230         17      0.913          1      0.995      0.725
                    p3        230        105       0.99          1      0.995      0.801
                    p8        230          1      0.637          1      0.995      0.597
                   f35        230         32      0.939      0.938      0.978      0.574
                   f18        230        125      0.985      0.992      0.987      0.817
                   v22        230         41      0.983          1      0.995       0.69
                 su-27        230         31      0.925          1      0.995      0.859
                 il-38        230         27      0.972          1      0.995      0.811
                tu-134        230          1      0.663          1      0.995      0.895
                 su-33        230          2          1      0.611      0.995      0.796
                 an-70        230          2      0.766          1      0.995       0.73
                 tu-22        230         98      0.984          1      0.995      0.831
Speed: 0.2ms preprocess, 3.8ms inference, 0.0ms loss, 0.8ms postprocess per image

改进一

测试结果

1、核大小为7的测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary (fused): 348 layers, 48066608 parameters, 0 gradients, 181.5 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:02<00:00,  5.12it/s]
                   all        230       1412      0.964      0.965       0.99       0.75
                   c17        230        131      0.986      0.985      0.995      0.822
                    c5        230         68      0.958      0.999      0.994      0.841
            helicopter        230         43      0.977      0.967      0.981      0.612
                  c130        230         85      0.995      0.988      0.995      0.684
                   f16        230         57      0.991      0.965       0.99      0.685
                    b2        230          2      0.879          1      0.995      0.849
                 other        230         86      0.972      0.953      0.969      0.545
                   b52        230         70      0.986      0.976      0.988      0.851
                  kc10        230         62      0.996      0.984      0.989      0.849
               command        230         40      0.991          1      0.995      0.837
                   f15        230        123      0.968      0.997      0.994      0.701
                 kc135        230         91      0.978      0.989      0.991      0.723
                   a10        230         27      0.949      0.684      0.924      0.434
                    b1        230         20      0.984       0.95      0.993      0.732
                   aew        230         25      0.949          1      0.995      0.774
                   f22        230         17      0.975          1      0.995      0.742
                    p3        230        105       0.99      0.982      0.995      0.794
                    p8        230          1      0.816          1      0.995      0.597
                   f35        230         32      0.953      0.938      0.991      0.555
                   f18        230        125       0.99      0.992      0.992      0.825
                   v22        230         41      0.992          1      0.995      0.709
                 su-27        230         31      0.985          1      0.995      0.835
                 il-38        230         27      0.987          1      0.995      0.852
                tu-134        230          1      0.797          1      0.995      0.895
                 su-33        230          2          1      0.702      0.995      0.796
                 an-70        230          2          1          1      0.995      0.858
                 tu-22        230         98      0.997          1      0.995      0.844
Speed: 0.2ms preprocess, 5.7ms inference, 0.0ms loss, 0.9ms postprocess per image

2、核大小为53的测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary (fused): 348 layers, 48169008 parameters, 0 gradients, 182.1 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:03<00:00,  4.90it/s]
                   all        230       1412      0.971      0.967       0.99      0.755
                   c17        230        131      0.985      0.985      0.995      0.831
                    c5        230         68      0.956      0.958      0.993      0.831
            helicopter        230         43      0.977      0.972      0.983      0.618
                  c130        230         85          1      0.975      0.994      0.671
                   f16        230         57          1      0.954      0.991      0.666
                    b2        230          2      0.934          1      0.995      0.754
                 other        230         86      0.976      0.928      0.982      0.542
                   b52        230         70      0.985      0.937      0.987      0.855
                  kc10        230         62          1      0.976      0.989      0.859
               command        230         40       0.98          1      0.995      0.847
                   f15        230        123      0.984      0.992      0.995      0.702
                 kc135        230         91      0.972      0.989      0.991      0.715
                   a10        230         27          1      0.581      0.928      0.461
                    b1        230         20          1      0.982      0.995      0.754
                   aew        230         25      0.951          1      0.995      0.786
                   f22        230         17      0.969          1      0.995      0.718
                    p3        230        105      0.996          1      0.995      0.796
                    p8        230          1       0.85          1      0.995      0.895
                   f35        230         32          1      0.885      0.991      0.574
                   f18        230        125       0.99      0.992      0.994       0.82
                   v22        230         41      0.994          1      0.995       0.74
                 su-27        230         31      0.991          1      0.995      0.869
                 il-38        230         27       0.99          1      0.995      0.867
                tu-134        230          1      0.835          1      0.995      0.895
                 su-33        230          2          1          1      0.995      0.697
                 an-70        230          2      0.894          1      0.995      0.796
                 tu-22        230         98      0.999          1      0.995       0.84
Speed: 0.2ms preprocess, 6.3ms inference, 0.0ms loss, 0.7ms postprocess per image

改进二

测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary: 748 layers, 34850736 parameters, 0 gradients, 130.7 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:03<00:00,  4.41it/s]
                   all        230       1412      0.965       0.98      0.991      0.754
                   c17        230        131      0.988          1      0.995      0.855
                    c5        230         68      0.962          1      0.995      0.836
            helicopter        230         43      0.946      0.977      0.975      0.647
                  c130        230         85      0.993          1      0.995      0.663
                   f16        230         57      0.988      0.965       0.99      0.682
                    b2        230          2      0.877          1      0.995      0.796
                 other        230         86      0.975      0.977      0.977      0.536
                   b52        230         70      0.993      0.986      0.989      0.841
                  kc10        230         62      0.994      0.984       0.99      0.862
               command        230         40      0.991          1      0.995       0.82
                   f15        230        123          1      0.998      0.995      0.714
                 kc135        230         91      0.996      0.989      0.991      0.704
                   a10        230         27          1        0.8      0.965      0.449
                    b1        230         20      0.984          1      0.995       0.72
                   aew        230         25      0.945          1      0.993      0.779
                   f22        230         17      0.979          1      0.995      0.772
                    p3        230        105      0.995      0.962      0.994      0.791
                    p8        230          1       0.81          1      0.995      0.697
                   f35        230         32          1      0.985      0.995      0.548
                   f18        230        125      0.991      0.992       0.99      0.838
                   v22        230         41       0.99          1      0.995      0.735
                 su-27        230         31      0.986          1      0.995       0.89
                 il-38        230         27      0.986          1      0.995      0.844
                tu-134        230          1      0.828          1      0.995      0.895
                 su-33        230          2          1      0.855      0.995      0.796
                 an-70        230          2      0.867          1      0.995      0.796
                 tu-22        230         98      0.996          1      0.995      0.843
Speed: 0.2ms preprocess, 8.2ms inference, 0.0ms loss, 1.3ms postprocess per image

改进三

测试结果

主干网络为van_tiny的测试结果:

代码语言:javascript代码运行次数:0运行复制
 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:02<00:00,  5.16it/s]
                   all        230       1412      0.967      0.959      0.988      0.731
                   c17        230        131      0.982      0.992      0.994       0.84
                    c5        230         68      0.971      0.988      0.994      0.832
            helicopter        230         43      0.959       0.93      0.981      0.608
                  c130        230         85          1      0.996      0.995      0.648
                   f16        230         57      0.996      0.965      0.983      0.673
                    b2        230          2      0.885          1      0.995      0.747
                 other        230         86      0.972      0.919      0.956      0.485
                   b52        230         70      0.983      0.971      0.986       0.83
                  kc10        230         62      0.996      0.984      0.989      0.837
               command        230         40      0.983          1      0.995      0.825
                   f15        230        123      0.992      0.967      0.994      0.672
                 kc135        230         91      0.989      0.983      0.985      0.699
                   a10        230         27      0.996      0.519      0.945      0.434
                    b1        230         20      0.984          1      0.995      0.712
                   aew        230         25       0.95          1      0.995      0.734
                   f22        230         17      0.986          1      0.995      0.724
                    p3        230        105          1      0.964      0.995        0.8
                    p8        230          1      0.872          1      0.995      0.697
                   f35        230         32          1      0.736      0.964      0.488
                   f18        230        125      0.988      0.984      0.987        0.8
                   v22        230         41      0.993          1      0.995      0.711
                 su-27        230         31      0.991          1      0.995      0.868
                 il-38        230         27      0.984          1      0.995      0.845
                tu-134        230          1      0.825          1      0.995      0.895
                 su-33        230          2      0.959          1      0.995      0.713
                 an-70        230          2      0.885          1      0.995      0.796
                 tu-22        230         98      0.985          1      0.995      0.833
Speed: 0.2ms preprocess, 5.6ms inference, 0.0ms loss, 1.0ms postprocess per image

主干网络为van_base的测试结果:

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary: 799 layers, 46376664 parameters, 0 gradients, 145.8 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:03<00:00,  4.34it/s]
                   all        230       1412      0.954      0.961      0.988      0.739
                   c17        230        131      0.984      0.992      0.995      0.833
                    c5        230         68      0.953          1      0.995      0.833
            helicopter        230         43      0.945      0.977       0.96       0.61
                  c130        230         85      0.983      0.988      0.995      0.652
                   f16        230         57      0.976      0.965      0.988      0.657
                    b2        230          2      0.878          1      0.995      0.697
                 other        230         86      0.919      0.942      0.968      0.494
                   b52        230         70      0.977      0.971      0.981      0.828
                  kc10        230         62      0.992      0.984      0.989      0.856
               command        230         40      0.988          1      0.995      0.818
                   f15        230        123      0.937      0.992      0.995      0.664
                 kc135        230         91      0.995      0.989      0.991      0.709
                   a10        230         27          1       0.62      0.909      0.455
                    b1        230         20          1      0.994      0.995       0.78
                   aew        230         25      0.945          1      0.992       0.77
                   f22        230         17      0.974          1      0.995      0.763
                    p3        230        105          1      0.984      0.995      0.806
                    p8        230          1       0.77          1      0.995      0.697
                   f35        230         32          1      0.996      0.995      0.503
                   f18        230        125      0.989      0.992      0.992      0.829
                   v22        230         41      0.989          1      0.995       0.71
                 su-27        230         31      0.964          1      0.995       0.86
                 il-38        230         27      0.972          1      0.995      0.862
                tu-134        230          1       0.76          1      0.995      0.895
                 su-33        230          2          1      0.552      0.995      0.759
                 an-70        230          2      0.865          1      0.995      0.796
                 tu-22        230         98      0.999          1      0.995      0.805
Speed: 0.2ms preprocess, 9.1ms inference, 0.0ms loss, 0.7ms postprocess per image

tiny模型的运算量为78.6 GFLOPs,比原始的模型降了一半,同时精度也有一点降低。

改进四

测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary: 631 layers, 23706232 parameters, 0 gradients, 78.6 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:02<00:00,  5.25it/s]
                   all        230       1412      0.964      0.969      0.988      0.747
                   c17        230        131      0.991      0.992      0.995       0.84
                    c5        230         68      0.977          1      0.995      0.832
            helicopter        230         43      0.955       0.99      0.976      0.657
                  c130        230         85      0.932          1      0.958      0.637
                   f16        230         57      0.977      0.965      0.978      0.693
                    b2        230          2      0.875          1      0.995      0.947
                 other        230         86      0.975      0.921      0.957      0.519
                   b52        230         70      0.986      0.978      0.988      0.841
                  kc10        230         62          1      0.984       0.99       0.85
               command        230         40      0.991          1      0.995      0.836
                   f15        230        123      0.952      0.992      0.995      0.677
                 kc135        230         91      0.976      0.989       0.99      0.701
                   a10        230         27          1      0.603      0.955      0.448
                    b1        230         20          1      0.969      0.995      0.736
                   aew        230         25      0.944          1       0.99      0.768
                   f22        230         17      0.948          1      0.995      0.759
                    p3        230        105      0.997      0.962      0.988      0.809
                    p8        230          1       0.82          1      0.995      0.497
                   f35        230         32          1      0.955      0.995      0.571
                   f18        230        125      0.989      0.992      0.992      0.827
                   v22        230         41      0.989          1      0.995      0.747
                 su-27        230         31      0.981          1      0.995      0.847
                 il-38        230         27      0.976          1      0.995      0.837
                tu-134        230          1      0.789          1      0.995      0.895
                 su-33        230          2          1      0.858      0.995      0.697
                 an-70        230          2          1          1      0.995      0.858
                 tu-22        230         98      0.997          1      0.995       0.83
Speed: 0.2ms preprocess, 5.3ms inference, 0.0ms loss, 0.9ms postprocess per image

从测试结果上看,mAP50-95提升的幅度还是很大!

改进五

测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary (fused): 278 layers, 44443824 parameters, 0 gradients, 165.6 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:06<00:00,  2.40it/s]
                   all        230       1412       0.97      0.968       0.99      0.745
                   c17        230        131       0.99      0.992      0.995      0.832
                    c5        230         68       0.95      0.985      0.994      0.832
            helicopter        230         43      0.957      0.953      0.979      0.631
                  c130        230         85      0.995      0.976      0.995      0.676
                   f16        230         57      0.998       0.93      0.988      0.675
                    b2        230          2       0.91          1      0.995      0.777
                 other        230         86      0.988       0.95      0.977      0.539
                   b52        230         70      0.982      0.971      0.987      0.846
                  kc10        230         62          1      0.975       0.99      0.847
               command        230         40      0.993          1      0.995      0.855
                   f15        230        123      0.975      0.968      0.994      0.688
                 kc135        230         91      0.985      0.989      0.982      0.717
                   a10        230         27          1      0.621      0.936      0.463
                    b1        230         20      0.991          1      0.995      0.718
                   aew        230         25      0.953          1      0.993        0.8
                   f22        230         17      0.937          1      0.995      0.723
                    p3        230        105          1      0.967      0.995      0.804
                    p8        230          1      0.878          1      0.995      0.697
                   f35        230         32          1      0.887      0.991      0.552
                   f18        230        125      0.976      0.989      0.992      0.818
                   v22        230         41      0.994          1      0.995      0.727
                 su-27        230         31      0.992          1      0.995      0.845
                 il-38        230         27      0.984          1      0.995      0.856
                tu-134        230          1      0.867          1      0.995      0.895
                 su-33        230          2          1      0.984      0.995      0.759
                 an-70        230          2      0.907          1      0.995      0.726
                 tu-22        230         98      0.998          1      0.995      0.828
Speed: 0.3ms preprocess, 6.3ms inference, 0.0ms loss, 3.4ms postprocess per image

mAP50 和mAP50-95均有提升!

总结

本文尝试了五种改进方式,既有轻量,又有提点的方法!欢迎大家在自己的数据集上做尝试!

文章详见:

代码语言:javascript代码运行次数:0运行复制
.2014.3001.5502
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。原始发表:2023-11-26,如有侵权请联系 cloudcommunity@tencent 删除论文模型网络测试翻译

本文标签: YoloV8改进策略独家原创,LSKA(大可分离核注意力)改进YoloV8,比Transformer更有效,包括论文翻译和实验