admin管理员组

文章数量:1487745

YoloV8改进策略:可变形大核注意力D

摘要

D-LKA一种新的注意力机制,解决了之前注意力机制在处理多模态和长程依赖关系方面的局限性。该文提出了一种可变形的大型卷积核,能够在感受野内全面地理解输入信息,提高了模型的性能。

作者还使用三组不同的医学图像数据集(Synapse、NIH Pancreas和Skin lesion)来评估D-LKA Attention的性能。通过与当前最先进的医学图像分割方法进行对比,该论文证明了D-LKA Attention在提高性能的同时,也能保证高效的计算速度。

我们使用D-LKA来改进YoloV8,效果如何呢?一起期待!!!!

Yolov8官方结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary (fused): 268 layers, 43631280 parameters, 0 gradients, 165.0 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 29/29 [
                   all        230       1412      0.922      0.957      0.986      0.737
                   c17        230        131      0.973      0.992      0.995      0.825
                    c5        230         68      0.945          1      0.995      0.836
            helicopter        230         43       0.96      0.907      0.951      0.607
                  c130        230         85      0.984          1      0.995      0.655
                   f16        230         57      0.955      0.965      0.985      0.669
                    b2        230          2      0.704          1      0.995      0.722
                 other        230         86      0.903      0.942      0.963      0.534
                   b52        230         70       0.96      0.971      0.978      0.831
                  kc10        230         62      0.999      0.984       0.99      0.847
               command        230         40       0.97          1      0.995      0.811
                   f15        230        123      0.891          1      0.992      0.701
                 kc135        230         91      0.971      0.989      0.986      0.712
                   a10        230         27          1      0.555      0.899      0.456
                    b1        230         20      0.972          1      0.995      0.793
                   aew        230         25      0.945          1       0.99      0.784
                   f22        230         17      0.913          1      0.995      0.725
                    p3        230        105       0.99          1      0.995      0.801
                    p8        230          1      0.637          1      0.995      0.597
                   f35        230         32      0.939      0.938      0.978      0.574
                   f18        230        125      0.985      0.992      0.987      0.817
                   v22        230         41      0.983          1      0.995       0.69
                 su-27        230         31      0.925          1      0.995      0.859
                 il-38        230         27      0.972          1      0.995      0.811
                tu-134        230          1      0.663          1      0.995      0.895
                 su-33        230          2          1      0.611      0.995      0.796
                 an-70        230          2      0.766          1      0.995       0.73
                 tu-22        230         98      0.984          1      0.995      0.831
Speed: 0.2ms preprocess, 3.8ms inference, 0.0ms loss, 0.8ms postprocess per image

改进一

测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary (fused): 316 layers, 54080128 parameters, 0 gradients, 245.0 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:04<00:00,  3.49it/s]
                   all        230       1412      0.934      0.982       0.99      0.747
                   c17        230        131      0.992      0.992      0.994      0.831
                    c5        230         68      0.921          1      0.988      0.836
            helicopter        230         43      0.969          1      0.988      0.639
                  c130        230         85      0.933      0.986      0.992      0.675
                   f16        230         57      0.982      0.962      0.973       0.67
                    b2        230          2      0.847          1      0.995      0.749
                 other        230         86      0.865      0.942      0.965      0.531
                   b52        230         70      0.972      0.977      0.976      0.825
                  kc10        230         62      0.994      0.984      0.989      0.841
               command        230         40      0.994          1      0.995      0.815
                   f15        230        123      0.985      0.976      0.994      0.696
                 kc135        230         91      0.986      0.989       0.99      0.696
                   a10        230         27          1      0.767       0.97       0.51
                    b1        230         20      0.979          1      0.995      0.709
                   aew        230         25      0.944          1      0.993        0.8
                   f22        230         17      0.965          1      0.995      0.757
                    p3        230        105          1       0.98      0.995        0.8
                    p8        230          1      0.744          1      0.995      0.697
                   f35        230         32      0.962      0.969      0.989      0.572
                   f18        230        125      0.986      0.992      0.988      0.821
                   v22        230         41      0.989          1      0.995      0.729
                 su-27        230         31      0.986          1      0.995       0.87
                 il-38        230         27      0.987          1      0.995       0.84
                tu-134        230          1      0.414          1      0.995      0.895
                 su-33        230          2          1          1      0.995      0.759
                 an-70        230          2      0.827          1      0.995      0.796
                 tu-22        230         98      0.996          1      0.995      0.821
Speed: 0.4ms preprocess, 14.5ms inference, 0.0ms loss, 0.6ms postprocess per image

改进二

测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary (fused): 394 layers, 53126232 parameters, 0 gradients, 267.9 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:09<00:00,  1.66it/s]
                   all        230       1412      0.948      0.971       0.99      0.744
                   c17        230        131      0.975      0.992      0.995      0.827
                    c5        230         68      0.955          1      0.993      0.829
            helicopter        230         43      0.963          1      0.981      0.619
                  c130        230         85      0.965      0.978      0.994      0.679
                   f16        230         57      0.986      0.965       0.97      0.677
                    b2        230          2      0.834          1      0.995      0.847
                 other        230         86       0.82       0.93      0.959      0.537
                   b52        230         70      0.986      0.983      0.987      0.833
                  kc10        230         62          1      0.982      0.989      0.839
               command        230         40       0.99          1      0.995      0.812
                   f15        230        123      0.992          1      0.995      0.688
                 kc135        230         91      0.985      0.989       0.99        0.7
                   a10        230         27          1      0.823      0.969      0.449
                    b1        230         20          1      0.989      0.995      0.682
                   aew        230         25      0.945          1      0.987      0.788
                   f22        230         17      0.923          1      0.995      0.767
                    p3        230        105          1      0.968      0.995      0.803
                    p8        230          1      0.778          1      0.995      0.697
                   f35        230         32      0.992      0.938      0.987      0.524
                   f18        230        125      0.988      0.992      0.989      0.819
                   v22        230         41      0.985          1      0.995       0.71
                 su-27        230         31      0.933          1      0.995       0.84
                 il-38        230         27      0.986      0.963      0.994       0.82
                tu-134        230          1      0.767          1      0.995      0.895
                 su-33        230          2          1      0.735      0.995      0.754
                 an-70        230          2       0.85          1      0.995      0.824
                 tu-22        230         98       0.99      0.999      0.995      0.841
Speed: 0.2ms preprocess, 35.0ms inference, 0.0ms loss, 1.2ms postprocess per image

改进三

测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary (fused): 484 layers, 47856408 parameters, 0 gradients, 213.9 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:05<00:00,  2.76it/s]
                   all        230       1412       0.96       0.97       0.99      0.751
                   c17        230        131      0.979      0.992      0.993      0.827
                    c5        230         68      0.943      0.982      0.992      0.836
            helicopter        230         43      0.954      0.956      0.981      0.607
                  c130        230         85      0.989      0.976      0.992      0.662
                   f16        230         57      0.965      0.947      0.989      0.679
                    b2        230          2      0.867          1      0.995      0.749
                 other        230         86      0.957      0.953      0.975      0.559
                   b52        230         70      0.985      0.971      0.987      0.841
                  kc10        230         62      0.998      0.984       0.99      0.847
               command        230         40      0.989          1      0.995      0.827
                   f15        230        123      0.988      0.984      0.995      0.686
                 kc135        230         91      0.979      0.989       0.99      0.699
                   a10        230         27          1      0.577      0.955       0.43
                    b1        230         20          1      0.976      0.995      0.701
                   aew        230         25      0.946          1      0.987      0.767
                   f22        230         17      0.973          1      0.995      0.746
                    p3        230        105          1      0.968      0.995      0.799
                    p8        230          1      0.798          1      0.995      0.697
                   f35        230         32          1      0.956      0.994      0.599
                   f18        230        125      0.989      0.992      0.988      0.835
                   v22        230         41      0.985          1      0.995       0.73
                 su-27        230         31      0.987          1      0.995      0.874
                 il-38        230         27      0.985          1      0.995      0.841
                tu-134        230          1      0.789          1      0.995      0.895
                 su-33        230          2          1          1      0.995      0.858
                 an-70        230          2      0.877          1      0.995      0.851
                 tu-22        230         98      0.993       0.99      0.995      0.831
Speed: 0.2ms preprocess, 20.8ms inference, 0.0ms loss, 0.4ms postprocess per image

改进四

测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary (fused): 305 layers, 46132716 parameters, 0 gradients, 291.5 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:05<00:00,  2.67it/s]
                   all        230       1412      0.965      0.977      0.991      0.744
                   c17        230        131      0.976      0.992      0.994      0.815
                    c5        230         68      0.995      0.971      0.994      0.825
            helicopter        230         43      0.955      0.998      0.979      0.592
                  c130        230         85      0.977      0.981      0.994      0.652
                   f16        230         57      0.995      0.965      0.993      0.681
                    b2        230          2       0.95          1      0.995      0.749
                 other        230         86      0.988      0.926      0.982      0.537
                   b52        230         70      0.986      0.977      0.986      0.839
                  kc10        230         62      0.996      0.984      0.989      0.843
               command        230         40      0.991          1      0.995      0.837
                   f15        230        123      0.984      0.993      0.995      0.689
                 kc135        230         91      0.979      0.989      0.991       0.72
                   a10        230         27          1      0.772      0.953      0.467
                    b1        230         20          1      0.965      0.995      0.738
                   aew        230         25       0.95          1      0.995      0.789
                   f22        230         17      0.936          1      0.995      0.745
                    p3        230        105      0.996          1      0.995      0.795
                    p8        230          1      0.837          1      0.995      0.796
                   f35        230         32          1      0.893      0.995      0.563
                   f18        230        125       0.99      0.992      0.992       0.83
                   v22        230         41      0.991          1      0.995      0.704
                 su-27        230         31      0.987          1      0.995       0.84
                 il-38        230         27          1      0.992      0.995      0.828
                tu-134        230          1      0.807          1      0.995      0.895
                 su-33        230          2       0.92          1      0.995       0.63
                 an-70        230          2      0.885          1      0.995      0.854
                 tu-22        230         98      0.997          1      0.995      0.826
Speed: 0.3ms preprocess, 20.7ms inference, 0.0ms loss, 0.8ms postprocess per image

改进五

测试结果

代码语言:javascript代码运行次数:0运行复制
YOLOv8l summary (fused): 280 layers, 47555908 parameters, 0 gradients, 168.1 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:01<00:00,  8.63it/s]
                   all        230       1412      0.962      0.966      0.987      0.748
                   c17        230        131      0.979      0.992      0.995      0.836
                    c5        230         68      0.975      0.985      0.993      0.848
            helicopter        230         43      0.963          1      0.987      0.608
                  c130        230         85      0.988      0.978      0.995      0.649
                   f16        230         57          1      0.946      0.989      0.667
                    b2        230          2      0.892          1      0.995      0.824
                 other        230         86      0.956      0.942       0.97      0.539
                   b52        230         70      0.977      0.957      0.985      0.844
                  kc10        230         62          1       0.98      0.989      0.834
               command        230         40      0.993          1      0.995      0.837
                   f15        230        123      0.918      0.995       0.99      0.692
                 kc135        230         91      0.979      0.989       0.99      0.706
                   a10        230         27          1       0.45      0.847      0.386
                    b1        230         20      0.996          1      0.995      0.749
                   aew        230         25      0.955          1      0.989      0.802
                   f22        230         17      0.885          1      0.995      0.739
                    p3        230        105          1      0.993      0.995      0.802
                    p8        230          1       0.85          1      0.995      0.796
                   f35        230         32          1      0.887       0.99      0.583
                   f18        230        125      0.983      0.992      0.994      0.825
                   v22        230         41      0.994          1      0.995      0.698
                 su-27        230         31      0.988          1      0.995      0.888
                 il-38        230         27       0.99          1      0.995      0.831
                tu-134        230          1      0.827          1      0.995      0.895
                 su-33        230          2          1          1      0.995      0.697
                 an-70        230          2      0.891          1      0.995      0.796
                 tu-22        230         98      0.997          1      0.995      0.826
Speed: 0.1ms preprocess, 4.7ms inference, 0.0ms loss, 0.4ms postprocess per image

链接:

.2014.3001.5502

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。原始发表:2023-10-08,如有侵权请联系 cloudcommunity@tencent 删除论文模型数据性能测试

本文标签: YoloV8改进策略可变形大核注意力D