admin管理员组文章数量:1437055
KDD 2025
KDD 2025将在2025年8月3号到7号在加拿大多伦多举行,本文总结了KDD 2025(August Cycle)有关时间序列(Time Series)相关文章,共计11篇,其中1-10为Research Track,11为ADS Track。如有疏漏,欢迎补充!
时间序列Topic:预测,异常检测,测试时适应等。
Research
1 IN-Flow: Instance Normalization Flow for Non-stationary Time Series Forecasting.
链接:.1145/3690624.3709260
作者:Wei Fan, Shun Zheng, Pengyang Wang, Rui Xie, Kun Yi, Qi Zhang, Jiang Bian, Yanjie Fu
关键词:预测,分布偏移,归一化流
IN-Flow
2 Quantum Time-index Models with Reservoir for Time Series Forecasting
链接:.1145/3690624.3709228
作者:Wenbo Qiao, Jiaming Zhao, Peng Zhang
关键词:预测,时间索引,量子模型
3 DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting
链接:.1145/3690624.3709325
代码:
作者: Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, Bin Yang
关键词:预测,双向聚类
新智元:时序预测再出新范式!华东师大提出DUET:「双向聚类」新设计,性能刷新SOTA!| KDD 2025
DUET
4 ST-MTM: Masked Time Series Modeling with Seasonal-Trend Decomposition for Time Series Forecasting
链接:.1145/3690624.3709254
作者:Hyunwoo Seo, Chiehyeon Lim
关键词:预测,掩码时间序列建模,季节性 - 趋势分解的
5 Probabilistic Hypergraph Recurrent Neural Networks for Time-series Forecasting
链接:.1145/3690624.3709202
作者:Hongjie Chen, Ryan A. Rossi, Sungchul Kim, Kanak Mahadik, Hoda Eldardir
关键词:概率预测,超图,循环神经网络
6 Proactive Model Adaptation Against Concept Drift for Online Time Series Forecasting
链接:.1145/3690624.3709210
代码:
作者: Lifan Zhao, Yanyan Shen
关键词:预测,在线学习,概念漂移
7 Learning Universal Multi-level Market Irrationality Factors to Improve Stock Return Forecasting
链接:.1145/3690624.3709328
代码:
作者:Chen Yang, Jingyuan Wang, Xiaohan Jiang, Junjie Wu
关键词:股票收益预测,市场非理性,深度学习,自监督学习
UMI
8 TSINR: Capturing Temporal Continuity via Implicit Neural Representations for Time Series Anomaly Detection
链接:.1145/3690624.3709266
代码:
作者:Mengxuan Li, Ke Liu, Hongyang Chen, Jiajun Bu, Hongwei Wang, Haishuai Wang
关键词:异常检测,隐藏神经表示,无监督学习
9 Noise-Resilient Point-wise Anomaly Detection in Time Series Using Weak Segment Labels
链接:.1145/3690624.3709257
代码:
作者:Yaxuan Wang, Hao Cheng, Jing Xiong, Qingsong Wen, Han Jia, Ruixuan Song, Liyuan Zhang, Zhaowei Zhu, Yang Liu
关键词:异常检测,正样本和无标签学习
Nrdetector
10 Augmented Contrastive Clustering with Uncertainty-Aware Prototyping for Time Series Test Time Adaptation
链接:.1145/3690624.3709239
代码:
作者:Peiliang Gong, Mohamed Ragab, Min Wu, Zhenghua Chen, Yongyi Su, Xiaoli Li, Daoqiang Zhang
关键词:测试时适应,原型学习
ACCUP
ADS
11 Multi-period Learning for Financial Time Series Forecasting
链接:.1145/3690624.3709422
代码:
作者:u Zhang, Zhengang Huang, Yunzhi Wu, Xun Lu, Erpeng Qi, Yunkai Chen, Zhongya Xue, Qitong Wang, Peng Wang, Wei Wang
关键词:金融时间序列预测,多周期学习
本文标签: KDD 2025
版权声明:本文标题:KDD 2025 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/biancheng/1747419058a2695603.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论