admin管理员组文章数量:1429064
Given three circles with their center point and radius, how can you define the area of intersection?
So far what I have is:
var point1 = {x: -3, y: 0};
var point2 = {x: 3, y: 0};
var point3 = {x: 0, y: -3};
var r1 = 5;
var r2 = 5;
var r3 = 5;
var area = returnIntersectionArea(point1, point2, point3, r1, r2, r3);
Also, if two collide but not the third, the function should return null. If none collide, null should be returned.
Given three circles with their center point and radius, how can you define the area of intersection?
So far what I have is:
var point1 = {x: -3, y: 0};
var point2 = {x: 3, y: 0};
var point3 = {x: 0, y: -3};
var r1 = 5;
var r2 = 5;
var r3 = 5;
var area = returnIntersectionArea(point1, point2, point3, r1, r2, r3);
Also, if two collide but not the third, the function should return null. If none collide, null should be returned.
Share Improve this question asked Apr 22, 2011 at 22:13 nagymaflanagymafla 2675 silver badges11 bronze badges 4- 3 This is less a programming question and more of a geometry/trig question so I suggest you try math.stackexchange. – Chris Cherry Commented Apr 22, 2011 at 22:19
- Thank you! I wanted to know what are the different javascript specific solutions as this script is a part of a javascript project. – nagymafla Commented Apr 22, 2011 at 22:24
- What if each circle overlaps with one other, but there is no point inside all three circles? Does that count as three colliding or not? – Simon G. Commented Apr 22, 2011 at 22:33
- Yes it does. If the three circles are not the same sized in pairs, then the intersection is the smallest circle in the middle. Otherwise, as always, it's the "mon part" of the three circles. – nagymafla Commented Apr 22, 2011 at 22:42
2 Answers
Reset to default 3This article describes how to find the area of the intersection between two circles. The result it easily extended to three circles.
-------------EDIT------------- OK, the problem is not easily extended to three circles, I found PhD theses on the subject. Assuming the three circles intersect as shown below, an approximate solution can be found (I think). Before we attempt it, we must check if the three circles indeed intersect as shown below. The problem changes quite a bit if say one circle is inside the other and the third intersects them both.
.
Let S1,S2 and S3 denote the areas of the three circles, and X1,X2 and X3 denote the area of the intersections between each pair of circles (index increases in clockwise direction). As we already established, there are exact formulae for these. Consider the following system of linear equations:
A+D+F+G = A+D+X1 = S1
B+D+E+G = B+D+ X3 = S2
B+E+D+G = B+E+X2 = S3
It is underdetermined, but an approximate solution can be found using least squares. I haven't tried it numerically but will get back to you as soon as I do :D If the least-squares solution seems wrong, we should also impose several constraints, e.g. the area if the intersection between any pair of circles is smaller than the area of the circles. Comments are appreciated.
PS +1 to Simon for pointing out I shouldn't qualify things as easy
One way of approaching this problem is via a Monte Carlo simulation:
function returnIntersectionArea(point1, point2, point3, r1, r2, r3) {
// determine bounding rectangle
var left = Math.min(point1.x - r1, point2.x - r2, point3.x - r3);
var right = Math.max(point1.x + r1, point2.x + r2, point3.x + r3);
var top = Math.min(point1.y - r1, point2.y - r2, point3.y - r3);
var bottom = Math.max(point1.y + r1, point2.y + r2, point3.y + r3);
// area of bounding rectangle
var rectArea = (right - left) * (bottom - top);
var iterations = 10000;
var pts = 0;
for (int i=0; i<iterations; i++) {
// random point coordinates
var x = left + Math.rand() * (right - left);
var y = top + Math.rand() * (bottom - top);
// check if it is inside all the three circles (the intersecting area)
if (Math.sqrt(Math.pow(x - point1.x, 2) + Math.pow(y - point1.y, 2)) <= r1 &&
Math.sqrt(Math.pow(x - point2.x, 2) + Math.pow(y - point2.y, 2)) <= r2 &&
Math.sqrt(Math.pow(x - point3.x, 2) + Math.pow(y - point3.y, 2)) <= r3)
pts++;
}
// the ratio of points inside the intersecting area will converge to the ratio
// of the area of the bounding rectangle and the intersection
return pts / iterations * rectArea;
}
The solution can be improved to arbitrary precision (within floating-point limits) by increasing the number of iterations, although the rate at which the solution is approached may bee slow. Obviously, choosing a tight bounding box is important for achieving good convergence.
本文标签: javascriptHow to define the intersection of three circlesStack Overflow
版权声明:本文标题:javascript - How to define the intersection of three circles? - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1745491610a2660629.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论