admin管理员组文章数量:1432230
i have a dataset in kaggle and i must compare different ML algorithms accuracy for a binary classification problem. the shape of data is (500000,18). but when i implement any kind of SVM like linear, rbf , poly ... the code wont stop even after a day and there is no error that i can figure out whats the problem. the data set addresss is : and my code is simple :
from sklearn.svm import SVC
clf = SVC(kernel='linear',C=0.001)
clf.fit(X_train, y_train)
i must mention that the accuracy isnt important i just must run different kernel for comparing the accuracies. is there any tips for running SVM for this dataset?
本文标签: pythonrunning a SVM classification wont stop on my datasetStack Overflow
版权声明:本文标题:python - running a SVM classification wont stop on my dataset - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1745566493a2663791.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论