admin管理员组

文章数量:1443940

深度学习 ——TensorFlow实战项目与进阶

几天不见了,朋友们,今天我们来继续充电咯,这次我们来利用前面的知识来实战TensorFlow。文章后面我还会列出我之前学习

TensorFlow的社区资源与学习路径希望对大家有所帮助。下面开始正文。

1.实战一:TensorFlow实现图像风格迁移

1.实现步骤

数据准备

内容图像:选择一张清晰的船舶照片。

风格图像:选择一张具有强烈风格特征的艺术作品,如油画或水彩画。

构建模型

使用tensorflow.keras.applications预训练的VGG19模型作为特征提取器。

定义内容损失和风格损失函数。

使用优化器最小化总损失(内容损失+风格损失×权重)。

训练模型

输入内容图像和风格图像。

通过多次迭代,逐步调整生成的图像,使其同时保留内容图像的结构和风格图像的特征。

最后生成结果

输出经过风格迁移后的船舶照片。

2.实现代码

导包:

代码语言:txt复制
import tensorflow as tf
from tensorflow.keras.applications import VGG19
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import Model
import numpy as np

加载并预处理图像:

代码语言:txt复制
def load_and_process_img(path_to_img):
    max_dim = 512
    img = image.load_img(path_to_img)
    img = image.img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = tf.image.resize(img, (max_dim, max_dim))
    img = img / 255.0
    return img
 
def deprocess_img(processed_img):
    x = processed_img.copy()
    if len(x.shape) == 4:
        x = np.squeeze(x, 0)
    assert len(x.shape) == 3
    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68
    x = x[:, :, ::-1]
    x = np.clip(x, 0, 255).astype('uint8')
    return x

加载VGG19模型并获取中间层输出:

代码语言:txt复制
def get_model():
    vgg = VGG19(include_top=False, weights='imagenet')
    vgg.trainable = False
    content_layers = ['block5_conv2']
    style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1']
    selected_layers = content_layers + style_layers
    outputs = [vgg.get_layer(name).output for name in selected_layers]
    model = Model([vgg.input], outputs)
    return model, content_layers, style_layers

计算风格损失:

代码语言:txt复制
def content_loss(base_content, target):
    return tf.reduce_mean(tf.square(base_content - target))
 
def gram_matrix(input_tensor):
    result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor, input_tensor)
    input_shape = tf.shape(input_tensor)
    num_locations = tf.cast(input_shape[1] * input_shape[2], tf.float32)
    return result / num_locations
 
def style_loss(base_style, gram_target):
    height, width, channels = base_style.get_shape().as_list()
    gram_style = gram_matrix(base_style)
    return tf.reduce_mean(tf.square(gram_style - gram_target))
 
def total_loss(model, loss_weights, init_image, gram_style_features, content_features):
    style_weight, content_weight = loss_weights
    model_outputs = model(init_image)
    style_output_features = model_outputs[len(model_outputs)//2:]
    content_output_features = model_outputs[:len(model_outputs)//2]
    style_score = 0
    content_score = 0
    
    weight_per_style_layer = 1.0 / float(len(style_layers))
    for target_style, comb_style in zip(gram_style_features, style_output_features):
        style_score += weight_per_style_layer * style_loss(comb_style[0], target_style)
    
    weight_per_content_layer = 1.0 / float(len(content_layers))
    for target_content, comb_content in zip(content_features, content_output_features):
        content_score += weight_per_content_layer * content_loss(comb_content[0], target_content)
    
    style_score *= style_weight
    content_score *= content_weight
    loss = style_score + content_score
    return loss

最后调用风格迁移函数:

代码语言:txt复制

def run_style_transfer(content_path, style_path, num_iterations=1000, content_weight=1e3, style_weight=1e-2):
    model, content_layers, style_layers = get_model()
    for layer in model.layers:
        layer.trainable = False
    
    content_image = load_and_process_img(content_path)
    style_image = load_and_process_img(style_path)
    
    style_outputs = model(style_image)
    content_outputs = model(content_image)
    style_features = [style_layer[0] for style_layer in style_outputs[len(style_outputs)//2:]]
    content_features = [content_layer[0] for content_layer in content_outputs[:len(content_outputs)//2]]
    gram_style_features = [gram_matrix(style_feature) for style_feature in style_features]
    
    init_image = load_and_process_img(content_path)
    init_image = tf.Variable(init_image, dtype=tf.float32)
    opt = tfpat.v1.train.AdamOptimizer(learning_rate=5, beta1=0.99, epsilon=1e-1)
    
    best_loss, best_img = float('inf'), None
    
    norm_means = np.array([103.939, 116.779, 123.68])
    min_vals = -norm_means
    max_vals = 255 - norm_means
    
    @tf.function()
    def compute_loss_and_grads(model, loss_weights, init_image, gram_style_features, content_features):
        with tf.GradientTape() as tape:
            all_loss = total_loss(model, loss_weights, init_image, gram_style_features, content_features)
        total_loss_value = all_loss
        return total_loss_value, tape.gradient(total_loss_value, init_image)
    
    for i in range(num_iterations):
        loss_value, grads = compute_loss_and_grads(model, [style_weight, content_weight], init_image, gram_style_features, content_features)
        loss_value = loss_value / tf.cast(tf.size(init_image), tf.float32)
        clipped_grads = tf.clip_by_value(grads, min_vals, max_vals)
        opt.apply_gradients([(clipped_grads, init_image)])
        clipped = tf.clip_by_value(init_image, 0, 1)
        init_image.assign(clipped)
        
        if loss_value < best_loss:
            best_loss = loss_value
            best_img = deprocess_img(init_image.numpy())
            
        if i % 50 == 0:
            print('Iteration: {}'.format(i))        
            print('Total loss: {:.4e}, ' 
                  'style loss: {:.4e}, '
                  'content loss: {:.4e}, '
                  'best loss: {:.4e}'.format(loss_value, style_weight*loss_value, content_weight*loss_value, best_loss))
    
    return best_img

通过上面的代码,我们可以实现一个生成风格迁移后的图像。我们利用了使用tensorflow.keras.applications预训练的VGG19模型神经网络的特征提取能力,将内容图像和风格图像的特征进行融合。

下面我再给大家列一下tensorflow如何学习吧。

2.tensorflow如何学习

社区资源

TensorFlow官方网站:提供文档、教程、API参考等资源。

TensorFlow GitHub仓库:包含TensorFlow的源代码和社区贡献的代码。

Stack Overflow:一个编程问答网站,可以在上面提问或搜索TensorFlow相关的问题。

Kaggle:一个数据科学竞赛平台,我们可以在上面找到TensorFlow相关的数据集和竞赛。

学习路径

  1. 首先先学习Python编程基础。
  2. 然后学习机器学习基础算法和原理。
  3. 再去学习TensorFlow的基本概念和API。
  4. 完成TensorFlow官方教程中的实战项目。
  5. 建议平时阅读相关论文和博客文章,了解TensorFlow的最新进展和应用。
  6. 多多去参与开源项目或数据科学竞赛,实践并提升自己的技能。

本文标签: 深度学习 TensorFlow实战项目与进阶