admin管理员组文章数量:1432620
I have data as follow:
{'index': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 49, 50, 51, 52, 53, 54, 55, 56, 57],
'columns': ['Subject', 'Visit', 'Date'],
'data': [['A', 'Screening', Timestamp('2023-11-15 00:00:00')],
['A', 'Week 0', Timestamp('2023-11-29 00:00:00')],
['A', 'Week 2', Timestamp('2023-12-12 00:00:00')],
['A', 'Week 4', Timestamp('2023-12-27 00:00:00')],
['A', 'Week 8', Timestamp('2024-01-22 00:00:00')],
['A', 'Week 12', Timestamp('2024-02-21 00:00:00')],
['A', 'Week 16', Timestamp('2024-03-17 00:00:00')],
['A', 'Week 20', Timestamp('2024-04-17 00:00:00')],
['A', 'Week 28', Timestamp('2024-06-06 00:00:00')],
['A', 'Week 36', Timestamp('2024-08-08 00:00:00')],
['B', 'Screening', Timestamp('2024-02-19 00:00:00')],
['B', 'Week 0', Timestamp('2024-03-10 00:00:00')],
['B', 'Week 2', Timestamp('2024-03-24 00:00:00')],
['B', 'Week 4', Timestamp('2024-04-07 00:00:00')],
['B', 'Week 8', Timestamp('2024-05-05 00:00:00')],
['B', 'Week 12', Timestamp('2024-06-02 00:00:00')],
['B', 'Week 16', Timestamp('2024-06-27 00:00:00')],
['B', 'Week 20', Timestamp('2024-07-28 00:00:00')],
['B', 'Week 28', Timestamp('2024-09-04 00:00:00')]],
'index_names': [None],
'column_names': [None]}
I want to create new column in df named "ScreeningDate" which would contain Screening date for given subject.
Can you please advice?
I have data as follow:
{'index': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 49, 50, 51, 52, 53, 54, 55, 56, 57],
'columns': ['Subject', 'Visit', 'Date'],
'data': [['A', 'Screening', Timestamp('2023-11-15 00:00:00')],
['A', 'Week 0', Timestamp('2023-11-29 00:00:00')],
['A', 'Week 2', Timestamp('2023-12-12 00:00:00')],
['A', 'Week 4', Timestamp('2023-12-27 00:00:00')],
['A', 'Week 8', Timestamp('2024-01-22 00:00:00')],
['A', 'Week 12', Timestamp('2024-02-21 00:00:00')],
['A', 'Week 16', Timestamp('2024-03-17 00:00:00')],
['A', 'Week 20', Timestamp('2024-04-17 00:00:00')],
['A', 'Week 28', Timestamp('2024-06-06 00:00:00')],
['A', 'Week 36', Timestamp('2024-08-08 00:00:00')],
['B', 'Screening', Timestamp('2024-02-19 00:00:00')],
['B', 'Week 0', Timestamp('2024-03-10 00:00:00')],
['B', 'Week 2', Timestamp('2024-03-24 00:00:00')],
['B', 'Week 4', Timestamp('2024-04-07 00:00:00')],
['B', 'Week 8', Timestamp('2024-05-05 00:00:00')],
['B', 'Week 12', Timestamp('2024-06-02 00:00:00')],
['B', 'Week 16', Timestamp('2024-06-27 00:00:00')],
['B', 'Week 20', Timestamp('2024-07-28 00:00:00')],
['B', 'Week 28', Timestamp('2024-09-04 00:00:00')]],
'index_names': [None],
'column_names': [None]}
I want to create new column in df named "ScreeningDate" which would contain Screening date for given subject.
Can you please advice?
Share Improve this question asked Nov 19, 2024 at 9:21 Vladimir BuzalkaVladimir Buzalka 619 bronze badges 1 |1 Answer
Reset to default 0First, you need to convert the JSON-like / dictionary structure to dataframe.
json_data = {
'index': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 49, 50, 51, 52, 53, 54, 55, 56, 57],
'columns': ['Subject', 'Visit', 'Date'],
'data': [
['A', 'Screening', '2023-11-15'],
['A', 'Week 0', '2023-11-29'],
['A', 'Week 2', '2023-12-12'],
['A', 'Week 4', '2023-12-27'],
['A', 'Week 8', '2024-01-22'],
['A', 'Week 12', '2024-02-21'],
['A', 'Week 16', '2024-03-17'],
['A', 'Week 20', '2024-04-17'],
['A', 'Week 28', '2024-06-06'],
['A', 'Week 36', '2024-08-08'],
['B', 'Screening', '2024-02-19'],
['B', 'Week 0', '2024-03-10'],
['B', 'Week 2', '2024-03-24'],
['B', 'Week 4', '2024-04-07'],
['B', 'Week 8', '2024-05-05'],
['B', 'Week 12', '2024-06-02'],
['B', 'Week 16', '2024-06-27'],
['B', 'Week 20', '2024-07-28'],
['B', 'Week 28', '2024-09-04']
]
}
Converting JSON-like structure to DataFrame
df = pd.DataFrame(json_data['data'], columns=json_data['columns'])
df['Date'] = pd.to_datetime(df_from_json['Date'])
df
Df:
Subject Visit Date
0 A Screening 2023-11-15
1 A Week 0 2023-11-29
2 A Week 2 2023-12-12
3 A Week 4 2023-12-27
4 A Week 8 2024-01-22
5 A Week 12 2024-02-21
6 A Week 16 2024-03-17
7 A Week 20 2024-04-17
8 A Week 28 2024-06-06
9 A Week 36 2024-08-08
10 B Screening 2024-02-19
11 B Week 0 2024-03-10
12 B Week 2 2024-03-24
13 B Week 4 2024-04-07
14 B Week 8 2024-05-05
15 B Week 12 2024-06-02
16 B Week 16 2024-06-27
17 B Week 20 2024-07-28
18 B Week 28 2024-09-04
Group the data by Subject
column. Within the groups locate Date
that corresponds to the Visit
labelled as Screening
. Then apply screening date to all rows using transform
function, this allows returning a column of the same length as the dataframe.
Then store the resulting screening date values for each subject in a new column named ScreeningDate
.
data = {
'Subject': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A',
'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B'],
'Visit': ['Screening', 'Week 0', 'Week 2', 'Week 4', 'Week 8',
'Week 12', 'Week 16', 'Week 20', 'Week 28', 'Week 36',
'Screening', 'Week 0', 'Week 2', 'Week 4', 'Week 8',
'Week 12', 'Week 16', 'Week 20', 'Week 28'],
'Date': [
pd.Timestamp('2023-11-15'), pd.Timestamp('2023-11-29'), pd.Timestamp('2023-12-12'),
pd.Timestamp('2023-12-27'), pd.Timestamp('2024-01-22'), pd.Timestamp('2024-02-21'),
pd.Timestamp('2024-03-17'), pd.Timestamp('2024-04-17'), pd.Timestamp('2024-06-06'),
pd.Timestamp('2024-08-08'), pd.Timestamp('2024-02-19'), pd.Timestamp('2024-03-10'),
pd.Timestamp('2024-03-24'), pd.Timestamp('2024-04-07'), pd.Timestamp('2024-05-05'),
pd.Timestamp('2024-06-02'), pd.Timestamp('2024-06-27'), pd.Timestamp('2024-07-28'),
pd.Timestamp('2024-09-04')
]
}
df = pd.DataFrame(data)
df['ScreeningDate'] = df.groupby('Subject')['Date'].transform(lambda x: x.loc[df['Visit'] == 'Screening'].values[0])
df
Df after changes:
Subject Visit Date ScreeningDate
0 A Screening 2023-11-15 2023-11-15
1 A Week 0 2023-11-29 2023-11-15
2 A Week 2 2023-12-12 2023-11-15
3 A Week 4 2023-12-27 2023-11-15
4 A Week 8 2024-01-22 2023-11-15
5 A Week 12 2024-02-21 2023-11-15
6 A Week 16 2024-03-17 2023-11-15
7 A Week 20 2024-04-17 2023-11-15
8 A Week 28 2024-06-06 2023-11-15
9 A Week 36 2024-08-08 2023-11-15
10 B Screening 2024-02-19 2024-02-19
11 B Week 0 2024-03-10 2024-02-19
12 B Week 2 2024-03-24 2024-02-19
13 B Week 4 2024-04-07 2024-02-19
14 B Week 8 2024-05-05 2024-02-19
15 B Week 12 2024-06-02 2024-02-19
16 B Week 16 2024-06-27 2024-02-19
17 B Week 20 2024-07-28 2024-02-19
18 B Week 28 2024-09-04 2024-02-19
本文标签: create new column with found value from column after group byStack Overflow
版权声明:本文标题:create new column with found value from column after group by - Stack Overflow 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.betaflare.com/web/1745569901a2663983.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
python
,pandas
,dataframe
,group-by
,datetime
, andpython-3.x
to help others understand the context of your question better. – EuanG Commented Nov 19, 2024 at 9:47